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Competition is intense among rival technologies, and success depends on predicting their future trajectory
of performance. To resolve this challenge, managers often follow popular heuristics, generalizations, or

“laws” such as Moore’s law. We propose a model, Step And Wait (SAW), for predicting the path of technological
innovation, and we compare its performance against eight models for 25 technologies and 804 technologies-
years across six markets. The estimates of the model provide four important results. First, Moore’s law and
Kryder’s law do not generalize across markets; neither holds for all technologies even in a single market. Second,
SAW produces superior predictions over traditional methods, such as the Bass model or Gompertz law, and
can form predictions for a completely new technology by incorporating information from other categories on
time-varying covariates. Third, analysis of the model parameters suggests that (i) recent technologies improve
at a faster rate than old technologies; (ii) as the number of competitors increases, performance improves in
smaller steps and longer waits; (iii) later entrants and technologies that have a number of prior steps tend to
have smaller steps and shorter waits; but (iv) technologies with a long average wait time continue to have large
steps. Fourth, technologies cluster in their performance by market.
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Introduction
Competition is intense among rival technologies in
many industries. For example, which is the technol-
ogy for auto batteries of the future: lead–acid, nickel
cadmium, fuel cell, or lithium ion? Similarly, which is
the technology for display monitors of the future: liq-
uid crystal diode (LCD), light-emitting diode (LED),
plasma display panel (PDP), or organic light-emitting
diode (OLED)? How should firms choose among
competing technologies? This is probably the preemi-
nent challenge facing managers of firms in technology
driven markets (Hauser et al. 2007, Tellis 2008).

To resolve this challenge and predict technology
change, managers often follow popular heuristics,
generalizations, or “laws.” Examples of such gen-
eralizations are Moore’s law, Kryder’s law, and the
logistic model. Some of these laws gain wide accep-
tance and begin to serve as self-fulfilling prophecies.
For example, Moore (2003) suggests that Moore’s law
drove semiconductor firms to focus enormous energy

and make large investments in a race to achieve
the performance predicted by the law ahead of their
competitors.

However, most generalizations and long-range pre-
dictions fail, offering little help in managerial deci-
sion making for at least four reasons (Armstrong 1984,
Balachandra 1980, Makridakis et al. 1982, Tashman
2000). First, heuristics or laws may be based on
cursory observations of short-term patterns instead
of on a scientific study of long-term data (e.g., by
Moore 1965). Such heuristics or laws may not survive
careful testing. Second, the law itself may be vague
in specification, with many contradictory versions.
For example, at least two versions of Moore’s law
are popular (performance doubling every year and
doubling every 18 months). The implications of this
uncertainty can be substantial. For example, a tech-
nology that doubles its performance every 18 months
improves to 100 times its initial performance over
10 years, whereas a technology that doubles every
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year improves to more than 1,000 times its initial per-
formance in the same period. Third, the popularity
of a law may encourage indiscriminate extension to
many fields, technologies, and industries. For exam-
ple, Moore’s law has been claimed to apply to sev-
eral metrics of technology performance, including the
size, cost, density, and speed of components in the
semiconductor industry, and many other technolo-
gies besides semiconductors, such as biotechnology,
nanotechnology, and genomics (Edwards 2008, Wolff
2004). In fact, Moore (1995, p. 1) suggests that the
law has come to refer to “almost anything related to
the semiconductor industry that when plotted on a
semi-log paper approximates a straight line.” Note
that without the exact specification of the slope of
the straight line, the law is intrinsically flexible and
susceptible to hindsight bias. Fourth, prior research
is inconclusive on whether the path of technology
evolution is smooth or irregular, suggesting that a
data-driven approach is better for prediction than
dependence on generalized heuristics. All four rea-
sons suggest the need for a better model for pre-
dicting the path of technology evolution. The current
research addresses these limitations in the literature
on technology evolution and addresses these research
questions:

• How valid are the traditional laws and models
for describing technology evolution?

• Which model can best predict the path of tech-
nological innovation?

• What are the key drivers of technology
evolution?

To address these questions, we propose a new
model called Step And Wait (SAW) and test it
against extant models for 25 technologies and 804
technologies-years across six markets for over several
decades. We make four contributions to the current
literature. First, we propose a model to predict the
evolution of technological performance that provides
better predictions than traditional models. Such pre-
diction allows both marketing and technology man-
agers to identify dimensions on which to focus their
new product design efforts. Second, the proposed
model allows for predicting the path of an entirely
new technology based on the similarity of its char-
acteristics to those of prior technologies. Third, the
exercise enables us to test the validity and generaliz-
ability of some popular laws about technology evo-
lution. Fourth, we identify key drivers of technology
evolution.

The next five sections present the theory, hypothe-
ses, models, method, and results. The last section dis-
cusses the findings, implications, and limitations of
the research.

Theory of Technology Evolution
Technology evolution is the improvement in the per-
formance of a technology over time. We are inter-
ested in a better understanding of the path of such
improvement. Prior literature has debated the shape
of the path (whether smooth or discontinuous) and
the drivers of the path (explanatory variables that
influence its course). We cover both of these topics
next.

Shape of Path
Prior literature suggests both smooth change through
incremental improvements occurring frequently
(Basalla 1988, Dosi 1982) and nonsmooth change
through relatively stable periods of smooth change
punctuated with discontinuous steps of big changes
(D’Aveni 1994, Eldredge and Gould 1972, Tushman
and Anderson 1986).

Proponents of smooth and incremental technolog-
ical change (e.g., Basalla 1988) argue that technol-
ogy evolution is a process of continual improvement
in performance of a technology through novel
recombination and synthesis of existing technologies
(Henderson and Clark 1990). These researchers sug-
gest that changes in technology performance are a
result of changes in a number of domains, includ-
ing beliefs, values, culture, technology, operating rou-
tines, organizational structure, resources, and core
competencies (Gersick 1991, Tushman and Romanelli
1985, Wollin 1999). Invention is a social process that
rests on the accumulation of many minor improve-
ments, not the heroic efforts of a few geniuses (Basalla
1988, Dosi 1982).

Proponents of irregular change (e.g., Adner 2002,
Eldredge and Gould 1972, Tushman and Anderson
1986) suggest that technologies improve through
eras of smooth change punctuated by discontinu-
ous shifts. Products that draw upon fundamentally
new technologies enter an industry and create fer-
ment till the emergence of dominant designs (Nelson
and Winter 1977, Utterback and Abernathy 1975).
After a dominant design is established, firms focus
more on process innovations than on product inno-
vations (Henderson and Clark 1990). Jumps in prod-
uct performance could occur from both product and
process innovation related to the focal technology.
Tushman and Anderson (1986) explain the discontinu-
ous nature of technological change through two types
of change—competence enhancing and competence
destroying. Levinthal (1998) extends the concept of
natural speciation (Eldredge and Gould 1972) to tech-
nology speciation. Substantial improvements in per-
formance occur because a shift of a technology from
one domain to another alters the relative preference
for attributes, demands different price/performance
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ratio for older attributes, and often releases substan-
tially higher resources for research and development
(R&D) (Levinthal 1998). This shift may be due to
(1) changes in problem-solving heuristics; (2) fusion
with other domains; and (3) other technological,
social, or economic aspects. Such shifts provide access
to new customers, resources, and performance met-
rics (Adner 2002). As a result, the technology exhibits
sharp steps in performance.

In summary, even though debate in prior research
is inconclusive as to whether technology evolution is
smooth or irregular, the question remains important
to managers. Thus, good forecasting capabilities may
spell the difference between success and failure in the
market.

Drivers of Path of Technological Change
Our review of the theory in this area suggests four
covariates that could drive the path of technological
change. We discuss the role of each of these covariates
next.1

Year of Introduction. This covariate reflects the
newness of the technology. We hypothesize that new
technologies improve in larger and more frequent
steps than old technologies as a result of the improve-
ment in the supporting environment for innovation
in recent years. In particular, improvements in sup-
porting environment are characterized by (1) higher
total R&D expenditures, (2) more researchers devoted
to technology research, (3) use of better tools, (4) bet-
ter laboratories, (5) better communication of research,
and (6) more countries focused on research.

In addition, the pace of improvement in new tech-
nologies may occur more frequently and in larger
steps than old technologies for three reasons. (1) After
a period of rapid improvement in performance, old
technologies may reach a period of maturity (Foster
1986, Brown 1992, Chandy and Tellis 2000, Sood
and Tellis 2011). Foster (1986) suggests that matura-
tion may be an innate feature of each technology.
Sahal (1981) proposes that maturity occurs because
of limits of scale or system complexity. Fleming
(2001) suggests that old technologies reach recombi-
nant exhaustion and improvements become smaller.
And Golder and Tellis (2004) suggest that matura-
tion can result from abandonment following a cas-
cade. (2) Newer technologies attract the interest of
firms. Market power acquired from successful inno-
vation in the old technologies spurs greater inventive
activity in new technologies. They seem mysterious
yet promise huge benefits. As such, they attract.

1 Other factors (e.g., market size, technological sophistication) may
also affect the evolution but have not been included in the analysis
because of a lack of reliable data on these variables. We thank an
anonymous reviewer for suggesting these.

(3) New technologies also introduce new performance
dimensions unrelated to those offered by old tech-
nologies. For example, before the advent of LCD mon-
itors, firms making CRT (cathode ray tube) monitors
competed mainly on higher screen resolution. LCD
monitors promised compactness as a new perfor-
mance dimension. Old technologies strive to compete
as customer demand for these dimensions increases.
This slows performance improvements on the exist-
ing dimension. Thus, we hypothesize the following.

Hypothesis 1 (H1). Performance of more recent tech-
nologies increases in (1) larger steps and (2) more frequent
steps (shorter wait times).

Order of Entry. After controlling for the basic effect
of calendar time, the order of entry of a technol-
ogy in a particular market could affect its improve-
ment. We need to emphasize that the time effect
probably holds for large time spans such as decades.
The order of entry works for small time spans such
as a few years within a market, within which one
technology follows another pretty rapidly. We iden-
tify two rival theories: preferential attraction versus
precommitment.

The preferential attraction theory holds that the
earlier technology gets more (or better, and initially,
all) of the limited set of resources (dollars, locations,
and researchers) than those technologies that follow.
Risk aversion of investors and researchers prevents
them from investing in new technologies. Prior lit-
erature also suggests that pioneers outperform later
entrants (Lambkin 1988, Urban et al. 1986). If this
line of reasoning is valid, the earlier technology will
have larger and more frequent improvements in per-
formance than later technologies within the same
market. The above argument leads to the following
hypothesis.

Hypothesis 2A (H2A). Technologies entering earlier
improve with (1) larger steps and (2) more frequent steps
(shorter wait times) than later technologies within the same
market.

The precommitment argument suggests that the
earlier technology enters in an environment with less
information about potential markets, dimensions of
performance, and available resources than the tech-
nology that enters later. Thus, the earlier technol-
ogy precommits to an evolutionary path that may
not be the most efficient or effective. The later tech-
nology enters in an environment with greater infor-
mation about markets, technologies, and resources,
and it chooses a more efficient and productive evo-
lutionary path (Golder and Tellis 1993). The glamour
of the “new” may also result in suppliers switching
resources from the old to the new. Thus, a technology
entering a market later will have more resources and
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more researchers working on it than an older tech-
nology. This will result in more frequent but smaller
steps in performance. The above argument leads to
the following rival hypothesis.

Hypothesis 2B (H2B). Technologies entering later
improve with (1) smaller steps and (2) more frequent steps
(shorter wait times) than earlier technologies to a market.

Number of Competing Technologies. Controlling
for the effects above, how does improvement relate to
the number of competing technologies? We propose
two rival theories: competition for limited resources
or competition spurring breakthroughs.

The limitation of resources theory is that in any
market the amount of dollars, researchers, and labs
is relatively fixed in the immediate short term. Thus
as the number of competing technologies increases,
each resource becomes more scarce. This division
of resources results in less frequent breakthroughs
and therefore less frequent increases in performance.
More competition leads firms to become more risk
averse and focus on cost management instead of
risky and costly product improvement. Firms gener-
ally achieve these objectives by prioritizing process
innovation over product innovation (Scherer and Ross
1990). Thus, as the number of competitors increases,
improvements in performance are slower.

The rival theory is of competition spurring break-
throughs. This phenomenon could occur for several
reasons. First, each technology is supported by a
unique set of researchers with their own egos, train-
ing, reputation, and emotional attachment. As the
number of competing technologies increases, their
supporters work harder to promote their own tech-
nologies and create improvements in performance.
It is also possible that more firms enter a market
because (a) there is demand or (b) because they think
it is relatively easy to improve existing products (tech-
nologies). In other words, if (b) is true, there are more
entrants because technological progress is likely to be
fast.2 As a result, the number of improvements in per-
formance increases with the number of competition
technologies in a market. Second, Rosenberg (1969)
refers to the phenomenon of compulsive sequence,
where a breakthrough in one area typically gener-
ates new technical problems, creating imbalances that
require further innovative effort to fully realize the
benefits of the initial breakthrough. For example, the
development of high-speed steel improved cutting
tools and stimulated the development of sturdier and
more adaptable machines to drive them (Rosenberg
1969). Third, new technologies may set up additional
opportunities in new niches even for old technolo-
gies. Fourth, prior research suggests that a firm’s

2 We thank an anonymous reviewer for suggesting this possibility.

returns from innovation at the margin are larger in
an oligopolistic versus a monopolistic environment
(Fellner 1961, Arrow 1962, Scherer 1967). Thus, more
competition generates more funds to support inno-
vation and faster product improvements. All these
reasons suggest that an increase in the number of
competitors will increase the number of improve-
ments in technology performance. Thus, we can pro-
pose the following rival hypotheses.

Hypothesis 3A (H3A). As the number of competi-
tors increases, performance of technologies increases in
(1) smaller steps and (2) longer wait times.

Hypothesis 3B (H3B). As the number of competi-
tors increases, performance of technologies increases in
(1) larger steps and (2) shorter wait times.

Technology Characteristics. We include two covar-
iates to capture technology characteristics—the num-
ber of prior steps and average prior wait time.
Together, the two covariates capture unique pat-
terns of technological improvement for a technology
within its unique technological paradigm (Nelson and
Winter 1982, Dosi 1982). A technological paradigm is
the common platform on which scientists and tech-
nologists agree to do research and explain the speed
and pattern of technological advancement. For exam-
ple, for the past 30 years, firms in the magnetic stor-
age industry pursued higher areal density as a goal
to solve design problems and achieve higher produc-
tivity. This common understanding led firms to race
to introduce improvements in areal density ahead of
other firms. In such an urgency, firms may not delay
investments in R&D and frequently introduce prod-
ucts with improvements.

In technologies where such a paradigm emerges,
a technology evolves with a large number of steps.
However, these steps are small and frequent. Firms
take advantage of interdependencies with compo-
nents and advancements in other fields. For example,
improvements in the areal density of magnetic storage
have been driven in part by advancements in other
related disciplines such as semiconductor, fiber optic,
and microelectronics.

In the absence of a dominant technological para-
digm, firms’ efforts scatter in diverse directions. R&D
efforts may be targeted toward improvements on
diverse performance metrics leading to little synergy
across firms’ efforts and to fewer steps. Also, com-
peting firms within an industry may wait to intro-
duce products to optimize commercialization costs.
As a result, there are few steps with long wait times.
Longer average wait times also provide firms more
time to develop better products. This results in tech-
nological progress with large step sizes and long wait
times. Thus, the technological paradigm theory sug-
gests the following two hypotheses.
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Hypothesis 4 (H4). Technologies with a large number
of prior steps have (1) small current steps and (2) a shorter
current wait time.

Hypothesis 5 (H5). Technologies with long average
prior wait times have (1) large current steps and (2) a long
current wait time.

Models
This section describes eight models in the literature
that have been or could be used to predict techno-
logical change and one model (SAW) that we pro-
pose specifically for this purpose (see Table 1). One
of the models is an exponential function used to fit
both Moore’s law and Kryder’s law (see Figure A1a
in Online Appendix A, available at http://dx.doi.org/
10.1287/mksc.1120.0739). Three more models are the
most popular methods used in prior literature to
test an S-shaped curve: the Bass, Logistic, and Gom-
pertz models (see Figure A1b in Online Appendix A).
All four models are smooth and do not allow the use
of explanatory variables in their popular formulation.
We propose modified versions of these four models
that do include explanatory variables to allow fair
comparison with SAW (see Online Appendix B). The
next two models are discontinuous and allow the use
of explanatory variables: the Gupta model for buyer
interpurchase behavior and the Tobit II model used to
model technology evolution (see Figure A1c in Online
Appendix A). Online Appendix B provides details on
the models and explains how they predict holdout
periods and technologies. We also include two simple
models for comparison—the Naïve method, which
does not use covariates, and the Diff Reg approach,
which implements a linear regression with covariates.
In addition, we develop modified versions of Expo-
nential, Logistic, Bass, and Gompertz models that
allow fitting all curves simultaneously and incorpo-
rating covariates.

Moore’s Law (Exponential Model)
First proposed by Intel cofounder Gordon E.
Moore, the law suggests that the density of inte-
grated circuits doubles in performance every year

Table 1 Unifying Framework for Models Predicting Technology
Evolution

Smooth Discontinuous
(continuous) (irregular)

Symmetric Logistic, Bass, Gompertz N/A
(S shaped)

Asymmetric Moore, Kryder SAW, Tobit II, Gupta, Diff Reg
(exponential shaped) (irregular step sizes

with irregular wait times)

Note. N/A, not applicable.

(Moore 1965). Thus, Moore’s law specifies an expo-
nential relationship between technology performance
and time (see Figure A1a in Online Appendix A and
(14) in Online Appendix B). Later, Moore revised the
law to a doubling in performance every two years
(Moore 1975). Subsequently, Moore claimed that the
performance of “almost anything related to the semi-
conductor industry” (Moore 1997) improves at expo-
nential rates across a number of measures including
size, cost (or experience), density, and speed of com-
ponents. Over the last few decades, many technolo-
gies like microprocessors and DRAMs seem to have
followed a revised Moore’s law that suggests dou-
bling every 18 months (Mollick 2006, Schaller 1997).
Researchers suggest that the law also describes tech-
nology evolution for many other technologies besides
semiconductors, such as biotechnology, nanotechnol-
ogy, and genomics (Edwards 2008, Wolff 2004). If so,
the designation of a “law” would be valid.

Kryder’s Law (Exponential Model)
First proposed by Seagate’s Chief Technology Officer
Mark Kryder, this law suggests that the density of
information on hard drives, also known as areal den-
sity, “increased by a factor of 1,000 every 10.5 years
since introduction of these technologies” (Walter 2005,
p. 32). This rate is equivalent to a doubling of perfor-
mance every 13 months (Shacklett 2008). Grochowski
(1998) suggests that the areal density has increased
at a compound annual growth rate of 60%. In effect,
both Moore’s law and Kryder’s law specify the same
exponential form with differing parameters on time
(Figure A1a in Online Appendix A and (14) in Online
Appendix B).

Logistic Model
One theory of the evolution of technology is the the-
ory of S-curves (Foster 1986). This theory suggests
that a plot of maximum performance of a technol-
ogy over time follows an S-shaped curve (see Fig-
ure A1b in Online Appendix A and (16) in Online
Appendix B). The S-curve results from changes in
performance on one dimension over the life of the
technology. In the early years after introduction, per-
formance improves slowly because of technical prob-
lems with mastering the new technology. Once the
initial bottlenecks have been resolved, performance
improves rapidly as the technology draws researchers
and resources. Eventually, the rate of improvement
declines because either the technology reaches its lim-
its of scale or size (Sahal 1981) or firms start invest-
ing in alternative technologies (Abernathy and Utter-
back 1978).

Bass Model
Some researchers examining the diffusion of new
products suggest a demand-side explanation of the
phenomenon of technology evolution (Adner 2002,
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Bass 1969, Rogers 1962, Young and Ord 1989,
Young 1993). These researchers suggest that con-
sumers adopt a new product based on spontaneous
innovation driven by word-of-mouth diffusion. This
process carves a typical S-shape of sales of a new
product (Sood et al. 2009) (see Figure A1b in Online
Appendix A and (18) in Online Appendix B). The
demand for the new product drives the evolution of a
new technology, on which the new product is based,
and it also follows an S-curve.

Gompertz’s Model
Gompertz’s law was first proposed by British actu-
ary Benjamin Gompertz for use in demographic stud-
ies and suggests that the rate of human mortality
increases exponentially with age (Gompertz 1825).
In the current context, Gompertz’s law states that
the maturity and exit of old technologies pave the
way for the new technologies and drive technology
evolution (Young and Ord 1989). The rate of change
in the performance of a technology increases at an
exponential rate, tracing a sigmoid double exponen-
tial S-shaped path over the life of the technology from
its introduction to its maturity (see Figure A1b in
Online Appendix A and (21) in Online Appendix B).
Gompertz’s law has been used extensively in prior
literature to describe technology evolution because
it produces S-shaped curves that describe the dif-
ferent phases of evolution—acceleration, inflection,
and deceleration of growth over time (Martino 2003;
Meade and Islam 1995, 1998, 2006; Young and Ord
1989). The different S-shaped curves have different
implications in symmetry around the relative location
of the inflection point. These differences may influ-
ence the power of these laws to predict technology
evolution.

Gupta Model
The model of Gupta (1988) is a well-known and pop-
ular approach for modeling consumer purchase deci-
sions. This model consists of three separate stages:
brand choice (for modeling the probability of pur-
chasing a particular brand), interpurchase time (for
modeling time until purchase), and purchase quan-
tity (for modeling the amount of goods purchased).
We use two stages of this model—interpurchase time
and quantity—to model the wait time and size of step,
respectively. This model provides a natural approach
for predicting the discontinuous nature of technology
evolution (see Figure A1c in Online Appendix A and
(23) and (24) in Online Appendix B).

Tobit II Model
The Tobit II models the evolution of technologies
as a series of step functions with random improve-
ments over irregular periods of time (see Figure A1c

in Online Appendix A and (25) and (26) in Online
Appendix B). The model includes a latent variable
that represents the probability of a step as a function
of explanatory variables.

Simple Models: Naïve and Diff Reg
We also include two simple alternatives. The first
method, Naïve, models technology curves as constant
in the holdout period. In other words, we assume
that the curve for each technology is horizontal;
i.e., if our last observation in the estimation sample
is �, we predict � for the entire holdout period. The
second method, Diff Reg, performs a single linear
regression on all technologies simultaneously using a
technology-specific indicator variable and the covari-
ates from the previous section as the independent
variables. The indicator variable is modeled as a ran-
dom effect. The change in (log) technology perfor-
mance between two successive periods is used as the
dependent variable. So, for example, if a technology
remained constant between two periods, we set Y = 0
for the response. After fitting the linear regression
model, we use the covariates of a technology to pre-
dict its change in each time period and hence the
entire trajectory.

SAW Model
We propose a new approach that models technolo-
gies as exhibiting periods of constant performance
followed by discontinuous steps (see Figure A1c in
Online Appendix A). We call this model Step And
Wait because it predicts steps in performance fol-
lowed by a flat “waiting” period before the next step.
Hence, it is in line with the theory that technologies
evolve according to irregular change. Our motivation
in proposing SAW is to test whether such a discon-
tinuous model could better predict the evolution of
a technology. SAW works by modeling the improve-
ment in performance using the Step submodel and the
time between changes in performance using the Wait
submodel. We describe the specification and prediction
of SAW here and the fitting in Online Appendix C.

Specification. Let Jij and tij respectively represent
the size of and the duration until the jth step for
technology i. Let Tij represent the time between
the (j − 1)th and jth steps for technology i, so
tij = ti4j−15 + Tij . SAW uses two submodels—the Step
submodel and the Wait submodel.

The Step submodel uses a hierarchical approach to
estimate the size of the jth step for the ith technology,
Jij , as a function of three quantities, M , �i1 and �ij , as
follows:

Jij ∼ Gamma4M1�i�ij51 (1)

�−1
i ∼ Gamma4�1�51 (2)

�ij = exp4rTij +�
1
Yij1 + · · · +�qYijq51 (3)
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where Yijk represents the value of the kth covariate
for technology i, at time tij , that is used to predict
the size of the step Jij . In this formulation, �, �, M ,
r , and �11 0 0 0 1�q are parameters to be estimated from
the data. The parameter M is a global value that con-
tributes to the average step size for all technologies.
The value of r controls the level and type of correla-
tion between the step at time j , Jij , and the wait until
this step, Tij . For r > 0, increased wait times imply
larger steps. The term �ij is a function of the various
covariates, such as the last wait time.

The random effect term, �i, is unique to each tech-
nology and reflects its typical step size. SAW builds
strength across all the data by estimating �i using
both the previously observed step sizes for the ith
technology and the typical step sizes of the other tech-
nologies. Modeling �i as a random effect allows us
to borrow strength across multiple technologies by
assuming that the �i for each technology is drawn
from a common distribution.

In theory, one could model Jij or �i as com-
ing from a variety of distributions. However, the
Gamma distribution has the following advantages.
(a) It is extremely flexible (it can model the mem-
oryless exponential and the chi-square distributions,
and it provides good approximations to Normal and
t-distributions). (b) Using a Gamma allows us to cal-
culate an exact likelihood function for the Step and
Wait submodels, which, in turn, provides a relatively
simple way of fitting the models by computing the
maximum likelihood estimates. For a given �i, the
expected step size is a function of the covariates Yijk,
the wait time Tij , and �i:

E4Jij ��i5 = M�i�ij

= M�i exp4rTij +�
1
Yij1 + · · · +�qYijq50

Hence, a technology with a small �i will tend to
have small step sizes, and vice versa, but this effect
can be moderated by the observed covariates (e.g.,
a large investment in research and development at
time tij5 through the parameter �ij . Since E4�−1

i 5 =

��, � and � provide information about the typical
step size over all technologies. However, the indi-
vidual covariates for each technology will also affect
the step size. The coefficients �11 0 0 0 1�q dictate the
relationship between the covariates and the step size;
for example, a positive value for �k indicates that
increases in the kth covariate are associated with
larger step sizes, whereas �k = 0 would suggest no
such relationship.

The Wait submodel works in a similar fashion, esti-
mating the wait time until the (j + 1)th step for tech-
nology i, Ti1 4j+15, as a function of three quantities,
�i1�ij , and K, as follows:

Tij ∼ Gamma4K1�i�i4j−1551 (4)

�−1
i ∼ Gamma4�1�51 (5)

�ij = exp4sJij +�
1
Xij1 + · · · +�pXijp51 (6)

where Xijk represents the value of the kth covariate
used to predict Tij for technology i at time tij and K, �,
�, �, s, and �11 0 0 0 1�p are parameters. The parameter
K is a global value that contributes to the average wait
time for all technologies, and s controls the correlation
between the jth step, Jij , and the wait time until the
(j+1)th step. A positive value of s implies longer wait
times after larger steps. The term �ij is a function of
the various covariates for technology i (including the
step size Jij5 at time tij .

The random effect, �i, is unique to each technol-
ogy and reflects its typical wait between steps. Again,
SAW builds strength across all the data by estimat-
ing �i using both the previously observed wait times
for the ith technology and the typical wait times of
the other technologies. For a given �i, the expected
wait until the next step is a function of the covariates
Xijk1K, and �i:

E4Ti4j+15 � �i5

=K�i�4ij5 =K�i exp4sJij +�1Xij1 + · · · +�pXijp50

Hence, a technology with a small �i will tend to have
short time periods between steps, and vice versa, but
this effect can be moderated by the observed covari-
ates at time tij through the parameter �ij . For example,
a technology may have a large �i and hence typi-
cally experience long waits between steps, but at a
given time, this might be moderated by a change
in the number of competing technologies, resulting
in a small �ij and, hence, a smaller wait time. The
expected value of �−1

i is ��. So � and � provide
information about the typical wait time over all tech-
nologies. However, the individual covariates for each
technology also affect the wait time. The coefficients
�11 0 0 0 1�p dictate the relationship between the covari-
ates and the wait time. For example, a positive value
for �k indicates that increases in the kth covariate
are associated with a longer wait, whereas �k = 0
suggests no relationship between the kth covari-
ate and the wait time. Because the covariates can
change over time, the typical Tij may increase or
decrease.

Predictions. Suppose for a given technology i we
observe ni steps, Ji ¢ = 4Ji11 0 0 0 1 Jini 5 with wait times
Ti ¢ = 4Ti11 0 0 0 1 Tini 5. Note that ti0 represents the time
of introduction. So Ti1 corresponds to the duration
from the introduction of a technology until the first
step, and Ji1 is the size of the first step. Then natu-
ral estimates for the size of the next step, Ji4n1+15, and
the wait until the next step, Ti4ni+15, are E4Ji4n1+15 � Ji ¢5
and E4Ti4ni+15 � Ti ¢5. Using the Step submodel given by
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Equations (1)–(3), by the law of iterated expectations
and the fact that J �� has a gamma distribution,

E4Ji4ni+15 � Ji ¢5 = E4E4Ji4ni+15 ��i5 � Ji ¢5

= E4M�i4ni+15�i � Ji ¢5=M�i4ni+15E4�i � Ji ¢50

To compute the final expectation we need to derive
the expected value of � � J . The distribution of �−1

conditional on J ¢ is given by

f 4�−1
� J ¢5∝f 4J ¢ ��−15f 4�−15

=

( ni
∏

j=1

4�i�ij5
−M JM−1

ij exp
(

−�−1
i

ni
∑

j=1

Jij�
−1
ij

)

�−��
−4�−15
i

·exp4−�−1
i /�5

)

·4â4M5niâ4�55−1

∝�
−4Mni+�−15
i exp

(

−�−1
i

(

1
�

+

ni
∑

j=1

Jij�
−1
ij

))

0

Hence,

�−1
i � J ¢ ∼ Gamma

(

Mni +�1
1

�−1 +
∑ni

j=1 Jij�
−1
ij

)

1

but the expected value of the inverse of a
Gamma(�1�5 random variable is equal to 1/4�4�− 155.
Therefore,

E4�i � Ji ¢5=
�−1 +

∑ni
j=1 Jij�

−1
ij

Mni +�− 1
1

and the expected size of the next step conditional on
previous steps is

E4Ji4ni+15 � Ji ¢5=M�i4ni+15

�−1+
∑ni

j=1 Jij�
−1
ij

Mni +�− 1
0 (7)

Similarly, using the Wait submodel given by Equa-
tions (4)–(6), the expected wait time until the next step
conditional on previous steps is (derivation is identi-
cal to that for (7))

E4Ti4ni+15 � Ti ¢5 = K�ini
E4�i � Ti ¢5

= K�ini

�−1 +
∑ni

j=1 �
−1
i4j−15Tij

Kni +�− 1
0 (8)

From Equation (8), we can predict that the next step
in technology i will occur at time

ti4ni+15 = tini +E4Ti4ni+15 � Ti ¢5

= tini +K�ini

�−1 +
∑ni

j=1 �
−1
i4j−15Tij

Kni +�− 1
1

the following step at time

ti4ni+25 = ti4ni+15 +K�i4ni+15

�−1 +
∑ni

j=1 �
−1
i4j−15Tij

Kni +�− 1
1

and so on.

Together, Equations (7) and (8) can be used to pre-
dict the entire remaining trajectory. Note that this
approach will work even for a curve for which we
have no data. SAW can be used to estimate the size of
the first step and the duration until the first step after
the introduction of a new technology. In this case,
ni = 0; so Equations (7) and (8) simplify as

E4Ti15=K�i0
�−1

�− 1
1 (9)

E4Ji15=M�i1
�−1

�− 1
0 (10)

Thus, given estimates for �i, �ij , �i, K, M , and
�ij , one can predict the evolution of a technology as
far into the future as desired by combining the pre-
dicted wait time (K�i�ij5 with the predicted step size
(M�i�ij5.

Connections to Renewal-Reward Process. Our
SAW model has similarities to a renewal-reward pro-
cess (see Cox 1970). In particular, for fixed values
of �i and �i, SAW fits a separate nonhomogeneous
RRP to each technology. The nonhomogeneous com-
ponent is introduced by virtue of the time-varying
covariates. However, although conditional on �i and
�i, each technology is independent, so these parame-
ters are unobserved in practice. Thus SAW models the
processes (technologies) as unconditionally related via
the Gamma distributions given by (2) and (5). In this
sense, SAW can be considered a generalization of a
standard renewal-reward process because it is build-
ing strength across the technologies by jointly model-
ing a series of related processes.

Extensions of the Exponential, Logistic, Bass,
and Gompertz Models. In their standard forms, the
Exponential, Logistic, Bass, and Gompertz models
all fit individually to a single technology and do
not incorporate covariates in their specification. This
specification places them at a potential disadvantage
relative to SAW, which both utilizes the covariate
information and builds strength across technologies
by fitting all curves simultaneously. To ensure a fair
comparison, we fit modified versions of these meth-
ods. In particular, we implemented two new versions
of each approach.

In the first implementation, we used a nonlin-
ear mixed effects model (Pinheiro and Bates 2000),
which fitted the standard functional forms of each
method but modeled the various parameters as ran-
dom effects coming from a Gaussian distribution. The
parameters for the Gaussian distribution were esti-
mated using all technologies simultaneously. Hence it
built strength across technologies in a similar fashion
to SAW. Our second implementation also modeled the
parameters using a random effects formulation but,
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in addition, incorporated the covariates as a multi-
plicative adjustment to the original prediction. In this
implementation, we modeled each technology using

Pij = fi4tij5exp
(

�0 +

q
∑

k=1

�kXijk

)

e�ij 1 (11)

where Pij is the performance of technology i at
time tij ; fi4t5 is the general formulation of the Expo-
nential, Logistic, Bass, or Gompertz model, exclusive
of covariates; and Xijk is the kth covariate for technol-
ogy i at time tij . For example, the Exponential model
(11) becomes

Pij = �i1e
�i2tij × exp

(

�0 +

q
∑

k=1

�kXijk

)

e�ij 1

�i1 ∼ N4�11�
2
1 51 �i2 ∼ N4�21�

2
2 51

with �i1 and �i2 modeled as coming from a Gaussian
distribution. Equivalently, using a log transformation,

log4Pij5= log4�i15+ tij�i2 +�0 +

q
∑

k=1

�kXijk + �ij 0

When fi4tij5 is set to the Bass model, (11) has a similar
form to the Generalized Bass model (Bass et al. 1994),
though the latter method does not use a mixed-effects
fitting procedure.

We used a multiplicative covariate adjustment to fi
because this ensured the basic shape for each model
was maintained while still allowing the covariates
to influence the fit. This second implementation had
the twin advantages of building strength by simul-
taneously fitting all curves and incorporating the
covariates. Hence, these models can be seen as a direct
competitor to SAW. To our knowledge, neither the
first nor second mixed-effects formulations have been
previously implemented in such a setting, except in
the Bass model. So our specification can be consid-
ered a contribution in its own right. For more details
of our fitting procedure, see Online Appendix B.

Method
This section describes the data collection and the
method of prediction.

Data
We collected data on 26 technologies drawn from six
markets: external lighting, desktop printers, display
monitors, desktop memory, data transfer, and auto-
motive battery technologies (see Table 2). We chose
these six markets to ensure sufficiently long periods
of study, a wide variety of technologies, and diversity
of markets. We collected the data using the historical
method (Sood and Tellis 2005). The primary sources
of our data are technical journals, white papers, press

Table 2 Technologies Sampled and Primary Dimensions of
Competition

Market Primary basis of competition Metric

External lighting Lighting efficacy Lumens per watt
Desktop memory Storage capacity Bytes per square inch
Display monitor Screen resolution Pixels per square inch
Desktop printer Print resolution Dots per square inch
Data transfer Transfer speed Megabits per second
Automotive battery Energy density Watt-hour per kilogram

Note. Adapted from Sood and Tellis (2005).

releases, timelines of major firms, museum records on
the development of industries, and annual reports of
industry associations.

For each technology, we collected the perfor-
mance record on the most important attribute to
consumers—the primary basis of competition among
technologies within a market (see Table 2). We iden-
tified these important attributes based on articles col-
lected through the historical method. We recorded the
maximum performance for any commercialized prod-
uct based on the technology at each time period. Our
sample includes technologies introduced more than a
hundred years ago and those introduced only in the
last decade. It also includes markets from basic util-
ities, medical therapeutics, and the digital industry.
Figure 1 shows the performance of all technologies in
three of the six markets.

We define a step as an improvement in performance
however small, of any product in the market based on
a technology. We make the following assumptions:
(1) The performance of a technology in the market
is based on the best performance of any commercial-
ized product based on that technology. Because of
constraints in production, competitive agreements, or
regulation, the performance of products in the mar-
ket often does not change at all in some years. Hence
the performance curve is flat in these years. (2) We
have identified all products in the market based on all
technologies. (3) The performance of these products
is correctly reported by manufacturers.

We used the following rules to ensure reliable and
consistent data. First, we measure the performance
of a technology based only on commercialized prod-
ucts of that technology. Second, if two sources provide
conflicting performance for a technology in a period,
we choose the one whose values are more consis-
tent with the rest of the series. Third, if no record is
available for a certain year, but a later record con-
firms that performance has not changed since the last
available record, we assume that the performance has
not changed in the intervening years. Fourth, if no
record is available for a certain year, but a later record
confirms that performance has changed since the last
available record, we treat the intervening years as

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Sood et al.: SAW vs. Moore, Bass, Gompertz, and Kryder
Marketing Science 31(6), pp. 964–979, © 2012 INFORMS 973

Figure 1 Performance of Technologies in the (a) Desktop Memory,
(b) Automotive Battery, and (c) Display Monitor Markets
by Year

missing data. Using these rules, we were able to col-
lect data on only 804 technology years compared
with the total of 901 technology years in our original
sample (89%).

Method of Prediction
A direct comparison of statistical models across mar-
kets on all these technologies is not possible unless the
performance plots are modified to convert absolute
performance to some sort of relative performance.
Because we want to analyze how a technology
improves over time, we calculate the ratio of current
performance to its performance in the first year of
introduction. We fit all methods after transforming
the data onto a log scale. This transformation reduces

skewness in the data and generally gave lower pre-
diction errors for all methods. We explain the specific
procedure for carrying out the prediction in two parts:
partitioning of sample and evaluation of predictive
accuracy.

Partitioning of Sample. To test the accuracy of
predictions for future technology innovation using
SAW and the six alternative models, we divided
the technologies into training (in-sample) and test-
ing (out-of-sample) time periods. We could use data
on only 25 technologies because the ESL technology
had only one observation by 2009. For each technol-
ogy, we aimed to predict the performance for the
most recent five years. The training period consisted
of the remaining data (see Figure A2a in Online
Appendix A). For the SAW approach, we fitted the
model using the training observations for all technolo-
gies except the one for which we wished to make pre-
dictions. We then used the training observations from
the curve for which we were forming predictions to
make predictions using Equations (7) and (8). This
approach guaranteed a fair comparison with the other
models by ensuring that the out of sample data for a
particular curve was never used, directly or indirectly,
to form estimates for a given technology.

Evaluation of Predictive Accuracy. We compare
the predictions on the test time period with the actual
evolution of the technology using two measures. The
first is the average absolute deviation (AAD):

AADi =
1
Z

Z
∑

t=1

�Pit − P̂�t�1 (12)

where Z is the length of the testing period, Pit is the
performance level at time t of the testing period for
technology i, and P̂�t is the corresponding estimate
using a given model.

The second approach standardizes the curves
according to the absolute values of the technology
(Percentage AAD). This method scales the error rel-
ative to the level of performance in the technology.
Specifically we compute

Percentage_AADi =
1
Z

Z
∑

t=1

�Pit − P̂�t�

Pit

0 (13)

We report the median values of AAD and Percent-
age_AAD averaged over all the technologies.

Results
We first present the results on the drivers of techno-
logical change. Next, we compare the performance of
SAW with alternative models in predicting technol-
ogy evolution. We then present the findings on the
step size, wait time, and growth rate for all technolo-
gies. Finally, we present plots of the patterns of tech-
nology evolution for all markets combined.
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Table 3 Drivers of Step Size and Wait Time

Step size Wait time

Covariate Est. t-value Est. t-value

Year of introduction (H1) 0019 3907 −0012 −24703
Order of entry (H2) −0031 −800 −0005 −103
No. of competing technologies (H3) −0011 −300 0042 1204
No. of prior steps (H4) −0001 −103 −0006 −604
Average prior wait time (H5) 0008 304 −00003 −001

Last step size (r − Equation (3)) 0002 209 00002 003
Last wait time (s− Equation (6)) −0004 −208 −0001 −008

Drivers of Technological Change
Table 3 presents the parameter estimates for the Step
and Wait submodels. The year of introduction covari-
ate has a positive sign for the Step submodel but a
negative sign for the Wait submodel. The results sup-
port H1, that products introduced in later years tend
to have shorter waits and larger steps.

The order of entry covariate has negative signs
for both the Step and Wait submodels. The results
indicate that, after controlling for year of entry, later
entrants to a market tend to have a shorter wait but
smaller steps. The negative coefficient for the step size
is highly statistically significant and is consistent with
the preferential attraction theory (H2B).

The number of competing technologies covariate
has a negative sign for the Step submodel and a pos-
itive sign for the Wait submodel. The results suggest
that after controlling for the effects above, our results
support H3A and reject H3B.

The number of prior steps covariate has a nega-
tive sign for both the Step and Wait submodels. The
results support H4 and suggest that technologies that
have a number of prior steps continue to have small
steps that happen at frequent intervals.

The average prior wait time covariate has a positive
sign for the Step submodel but a slightly negative sign
for the Wait submodel. The results partially support
H5, suggesting that, after conditioning on the other
covariates, technologies with long average prior wait
times also have larger step sizes but may not continue
to have long wait times.

Finally, the last step size and the last wait time
covariates are statistically significant in the Step sub-
model, providing evidence that there is a correlation
between step sizes and wait times, even after adjust-
ing for the other covariates.

Comparison with Alternative Models
Table 4 presents the median errors over all technolo-
gies, comparing SAW with the alternative models.
We use the final five years for each technology as
the testing period; i.e., Z = 5. We found that all of
the alternative models generally gave superior results
using the log transformed data, so we report only

Table 4 Comparison with Alternative Models: Median of Test Errors
(Z = 5 Years)

Hypothesized
No covariates covariates

Path of tech.
Model change AAD % AAD AAD % AAD

Moore/Kryder Exponential 0045 0012 0030 0007
Logistic S-shaped 0027 0008 0031 0007
Bass S-shaped 0028 0008 0056 0021
Gompertz S-shaped 0031 0009 0032 0007
Gupta Irregular 0026 0007 0031 0008
Tobit II Irregular 0041 0014 0034 0016
SAW Irregular 0020 0005 0013 0007
Naïve No change 0024 0006 N/A
Diff Reg N/A 0055 0013

Notes. Refer to Table 3 for hypothesized covariates. N/A, not applicable.

these results. We also adjusted the competing meth-
ods so that their predicted curve passed through the
final training data point (see Figures A2b and A2c
in Online Appendix A). This generally gave supe-
rior results and made the models comparable to SAW,
which forms its predictions in the holdout period
starting from the final training data point.

Table 4 contains two sets of results for each method.
The first is the random effects fit with no covari-
ates, and the second is the fit that incorporates the
covariates from Table 3 using (11). Among the mod-
els without covariates, SAW is significantly superior
on both metrics. When incorporating covariates, SAW
improves further on the AAD metric, in absolute
terms and relative to the competing methods. SAW
is the best in AAD and tied for the best in Percent-
age AAD. Figure 2 plots the median AAD by year
for models with covariates and demonstrates that
SAW outperforms most models in every year dur-
ing the testing period. The only exceptions are 2005
and 2006, where the SAW and Gupta models both
have zero AAD. In all other years, and for all other
methods, SAW is superior. We also compare the per-
technology performance of SAW relative to the com-
peting methods (see Table 5). The SAW model is first,

Figure 2 Median AAD for Models with Covariates
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Table 5 Average AAD in Testing Period for All Models and Technologies

Technology Exp Logistic Bass Gompertz Gupta Tobit II SAW Diff Reg

Incandescent 0010 0022 0072 0028 0008 0006 0005a 1016
Arc discharge 0012 0020 1047 0024 0000 0002 0000a 0005
Gas discharge 0009 0011 0085 0011 0012 0004 0011 0003
LED 1032 1037 1047 1047 1047 1026 1039 1013
MED 0005 0003 0000 0000 0000 0024 0007 0001
Magnetic 0032 0032 0062 0062 0025 0023 0026 0074
Optical 0022 0025 0002 0000 0046 0072 0000a 0021
Magneto-optical 1030 1030 1071 1061 1009 0088 1061 1030
Holographic 0028 0012 0039 0031 0030 0029 0037 0015
Semiconductor 0078 0065 0086 0075 0076 0072 0086 0074
CRT 0035 0001 0003 0001 0042 0032 0013 0072
LCD 0024 0010 0023 0018 0025 0045 0010a 0037
OLED 0016 0005 0058 0007 0031 0022 0008 0055
PDP 0030 0031 0037 0037 0037 0030 0026a 0032
LCOS 0009 0032 0005 0033 0006 0014 0004a 0004
Dot matrix 0047 0048 0052 0048 0029 0034 0048 0050
Inkjet 0032 0055 0069 0047 0031 0046 0058 0068
Laser 0096 1011 1042 1035 1013 0083 1039 1008
Thermal 0063 0071 1016 1007 1001 0082 0087 0060
Copper/aluminum 0093 0063 0000 0062 1027 1006 0000a 2007
Fiber optics 0077 0076 0051 0066 0045 1084 1021 1000
Wireless 0050 0050 1038 0032 0032 0047 0005a 0085
Galvanic cell 0013 0005 0056 0007 0000 0013 0000a 0039
Fuel cell 0008 0016 0007 0017 0025 0061 0030 0025
Flow cell 0003 0001 0003 0000 0000 0012 0000a 0008

No. of times best 1 5 2 2 4 2 10 3

Median 0.30 0.31 0.56 0.32 0.31 0.34 0.13 0.55

Note. MED, microwave electrodeless discharge; LCOS, liquid crystal on silicon.
aLowest AAD across all models.

equal in performance on 40% of technologies, and has
the lowest median AAD across all technologies for the
five holdout (most recent) years.

We also implemented the Exponential, Logistic,
Bass, and Gompertz models using fixed effects for the
parameters, i.e., fitting the models separately to each
curve. The results (not shown here) were generally
inferior to those reported in Table 4, suggesting that
building strength by fitting all curves simultaneously
using random effects improves prediction accuracy.
However, because the alternative models were still
inferior to SAW, we can conclude that SAW is per-
forming well not only because of its ability to build
strength across technologies but also because of its
functional form, which more accurately matches the
observed data.

Step Size, Wait Time, and Growth Rate
Equations (7) and (8) provide predicted step size and
wait times that can be used to predict the future evo-
lution of a technology. Table 6 presents the average
predicted step size (on a log scale) and wait time
(in years) for each technology (see columns 4 and 5).
By taking the ratio of predicted step size and wait
time, we can also assess the average long run growth
rate for each technology (column 6). Column 7 of
Table 6 contains the estimates for �2, the exponent

used in a fixed-effects model to fit an exponential
curve to each technology, along with the associated
standard error, ��2

. Kryder’s law predicts that �2 =

412/135 log 2 = 0064, whereas Moore’s law implies �2 =

412/185 log 2 = 0046. Almost all technologies exhibited
rates of growth considerably slower than these values.
The lone exceptions were the fiber optics and wire-
less technologies, which had estimated coefficients of
�2 = 0044 and �2 = 0060, respectively. Thus, contrary
to claims in the literature, Kryder’s law and Moore’s
law appear to be neither applicable to the magnetic
storage technology nor generalizable across markets.

Figure 3 provides a plot of the predicted step sizes
and wait times for each of the 25 technologies on a
two-dimensional graph. Two aspects stand out: First,
there is clear clustering, with technologies from the
same markets generally showing similar predicted
step sizes and wait times. We might expect this form
of clustering, because technologies within the same
market will tend to have similar properties. Second,
the unconditional correlation between step size and
wait time is negative (−0.32).

Figures A3a and A3b in Online Appendix A plot
the step size and wait times, respectively, for each
technology as a function of calendar year. The posi-
tive slope of the trend line in Figure A3a suggests that
the step size is increasing over time, and the negative
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Table 6 Step Size, Wait Times, and Growth Rates

(7)
(3) (4) (5) (6) Growth rate

(1) (2) Year of Mean Mean Growth rate from from exponential
Category Technology introduction step size wait time SAW (Equations (7) and (8)) model (SE)

External lighting Incandescent 1879 0011 19073 0001 0002 (0.001)
Arc discharge 1908 0010 10011 0001 0003 (0.001)
Gas discharge 1932 0027 14002 0002 0002 (0.001)
LED 1965 0034 3063 0009 0013 (0.005)
MED 1989 0034 6098 0005 0001 (0.002)

Desktop memory Magnetic 1937 0035 1025 0028 0031 (0.007)
Optical 1982 1028 10083 0012 0012 (0.011)
Magneto-optical 1986 0088 4047 0020 0024 (0.011)
Holographic 2002 0079 4006 0019 0012 (0.017)
Semiconductor 2002 0091 5000 0018 0026 (0.066)

Display monitor CRT 1929 0038 3059 0010 0019 (0.016)
LCD 1967 0050 3029 0015 0021 (0.011)
OLED 1971 0052 5013 0010 0011 (0.011)
PDP 1984 0060 4013 0015 0020 (0.018)
LCOS 2004 0047 4052 0010 0002 (0.007)

Data transfer Dot matrix 1953 0056 5002 0011 0007 (0.005)
Inkjet 1975 0091 2019 0041 0032 (0.013)
Laser 1976 0083 5021 0016 0019 (0.014)
Thermal 1979 0069 3037 0020 0029 (0.018)

Desktop printer Copper/aluminum 1962 2047 5017 0048 0038 (0.021)
Fiber optics 1977 2019 1088 1016 0044 (0.016)
Wireless 1982 1083 2069 0068 0060 (0.051)

Automotive battery Galvanic cell 1780 0034 5074 0006 0006 (0.008)
Fuel cell 1838 0049 2062 0019 0010 (0.008)
Flow cell 1980 0030 7060 0004 0002 (0.002)

Figure 3 Plot of Step Sizes and Wait Times for 25 Technologies
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slope in Figure A3b suggests that the wait time is
decreasing over time. Figure A3c plots the growth rate
(on a log scale) over calendar time and shows a very
clear trend of exponentially increasing growth rates
over calendar time, with a correlation of over 0.6 with
a p-value below 1%. These results suggest that tech-
nology evolution is occurring at a faster pace with
calendar time.

Discussion
This section summarizes the findings and discusses
the implications and limitations.

Summary of Findings
The current research leads to four major findings:

1. The traditional laws of technology evolution
such as Moore’s law and Kryder’s law do not gener-
alize across markets; none holds for all technologies
even in a single market.

2. SAW produces superior predictions over tradi-
tional methods, such as the Bass model or Gompertz’s
law, and can form predictions for a completely new
technology by incorporating information from other
categories on time-varying covariates.

3. The signs of the significant drivers of technology
evolution suggest that

a. recent technologies improve at a faster rate
than old technologies;

b. as the number of competitors increases, the
performance of technologies increases in smaller steps
and longer waits;

c. later entrants to a market and technologies that
have a number of prior steps tend to have smaller
steps and shorter waits; and

d. technologies with long average prior wait
times continue to have large step sizes.

4. Technologies cluster in their performance by
market.

Implications
This study has several implications for managers.
First, our results suggest that popular laws and mod-
els such as Moore’s law, Kryder’s law, Gompertz’s
law, and the logistic model are naïve generaliza-
tions of what seems to be a complex phenomenon.
Such theories make simplistic assumptions about
the path of technology evolution (e.g., exponential
or S-shaped) and thus are inadequate in predicting
technology change well. Surprisingly, over the period
covered in our analysis, it took 28 months for mag-
netic storage technology to double in performance,
which is much longer than the commonly espoused
versions of Moore’s law claiming that performance
doubles every 18 months (recent) or 12 months (orig-
inal). Hence, although such laws may serve as long-
term guideposts for industry evolution, using them to

predict the performance of a technology is quite risky
and potentially misleading. On the other hand, SAW
explicitly models the discontinuous nature of the tech-
nology evolution curves observed empirically.

Second, SAW can help managers to reduce the
nature and extent of uncertainty regarding the future
path of technology evolution. SAW can be easily fit
by a simple maximum likelihood approach and incor-
porates time-varying covariates for each technology.
Thus, managers can use it to assess the nature of the
threat posed by a competing technology by classifying
it as one that is a long-wait/small-step technology, or
vice versa. As an example, consider the competition
between LCD and CRT monitors (see Figure 1c). Sony
kept investing in CRT technology even after LCD
first crossed CRT in performance in 1996. Instead of
considering LCD, Sony introduced the FD Trinitron/
WEGA series, a flat-screen version of the CRT. CRT
crossed LCD for a few years, but ultimately lost deci-
sively to LCD in 2001. In contrast, by backing LCD
technology, Samsung grew to be the world’s largest
manufacturer of LCD monitors, whereas the former
leader Sony had to seek a joint venture with Samsung
in 2006 to manufacture LCD monitors. Prediction of
the next step size and wait time using SAW could
have helped Sony’s managers make a timely invest-
ment in LCD technology.

Third, SAW overcomes limitations of prior models
of depending on only environmental scanning (e.g.,
survey or the Delphi method) or extrapolation (e.g.,
trend analysis). SAW incorporates both environmental
scanning by incorporating data from multiple tech-
nologies and extrapolation by incorporating past data
from the target technology in making predictions.
Further, SAW is flexible enough to allow for large
periods of no change punctuated by big steps or small
periods of small changes, approximating a smooth
curve. As such, it partially resolves the controversy
in the literature between technology evolution via a
smooth curve (Basalla 1988, Dosi 1982) or via sta-
ble periods punctuated with big steps (Eldredge and
Gould 1972, Tushman and Anderson 1986). For exam-
ple, inkjet printers became the dominant technology
in the market even though they had the lowest per-
formance at its introduction through a series of small
but frequent steps.

Fourth, our results suggest that the competitive
landscape is becoming more intense. An increasing
number of new technologies is entering the mar-
ket. The rate of technology evolution is increasing at
a faster pace. Thus, managers need a method and
model to predict technology evolution to guide their
multimillion dollar investments. SAW serves such a
purpose. SAW can easily make predictions for a new
technology with no prior data. This discussion brings
us back to the key question that managers face: Which
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technology to back? In GM’s case, it turned out to be
a billion-dollar question. GM spent over a billion dol-
lars on the hydrogen fuel cell. Yet the technology that
leapt ahead in the 2000s was lithium-ion. Tesla based
its battery on lithium-ion technology and had a car on
the market in 2006. GM saw the need for lithium-ion
only after the Tesla car was launched, and it launched
a car using a lithium-ion battery only in December
2010. Many firms were taken by surprise by the sud-
den dominance of lithium-ion. Managers might have
presaged the improvements in lithium-ion technology
before 2006 by using our model.

Limitations
This study has five limitations. First, we had to limit
our analysis to only six markets because of the time
and difficulty of data collection. Second, our anal-
ysis does not include the impact of investments in
R&D on technology evolution. This is a limitation of
the data, rather than of SAW, as it could certainly
include R&D budgets as a covariate, which should
increase its predictive accuracy even more. Third, our
analysis does not include the cost of the technology
to buyers. Fourth, it is not possible to exactly esti-
mate the step size and wait times for the years with
missing data. However, given the small percentage of
such data, this is unlikely to have a significant effect
on the results. Fifth, we assume that firms announce
all improvements in performance and that there are
no minor improvements between steps. A possible
extension may relax this assumption and allow for a
low level of growth during the wait period. All of
these limitations are potential opportunities for future
research.

Electronic Companion
An electronic companion to this paper is available as
part of the online version at http://dx.doi.org/10.1287/
mksc.1120.0739.
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